
1

Techniques for Simplifying Operations Using VML
(Virtual Machine Language) Sequencing on Mars Odyssey

and SIRTF12

Dr. Christopher A. Grasso (Stellar Solutions)
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive
M/S: 301-250D

Pasadena, CA 91109-8099
303-641-5926

cgrasso@stellarsolutions.com

1 0-7803-7651-X/03/$17.00 © 2003 IEEE
2 IEEEAC paper #1155, Updated September 19, 2002

Abstract—VML (Virtual Machine Language) is an advanced
procedural sequencing language which simplifies spacecraft
operations, minimizes uplink product size, and allows
autonomous operations aboard a mission without the
development of autonomous flight software. VML is used
on Mars Odyssey and Space Infrared Telescope Facility, and
is slated for use on Mars Reconnaissance Orbiter. The
language is a mission-independent, high level, human
readable script. It features a rich set of data types (including
integers, doubles, and strings), named functions, parameters
to functions, IF and WHILE control structures,
polymorphism, and on-the-fly creation of spacecraft
commands from calculated values.

The ground component of VML consists of a mission-
independent compiler, a data-driven command generator,
and an execution tool, all of which run under Unix. The
compiler translates human readable source to a binary
format. The data-driven command generator translates
mission-specific spacecraft commands for the compiler from
human-readble text to binary. The offline sequence
execution tool runs sequences at speeds several thousand
times real-time, and provides debugging features, integrated
reports, and interactive execution options. These tools allow
iterative development of sequences with a turnaround time
of seconds rather than the hours or days typical with full-up
lab testing.

Parameterization and use of reusable functions called blocks
onboard the spacecraft has several advantages over ground
expanded sequences. Mission safety is enhanced, since
blocks receive more scrutiny up front during development.
Development of sequences is simplified due to the rich set
of behaviors that can be invoked from blocks. The review
and test process for the invoking sequences is simplified
because the behavior of the blocks is well understood.
Mission costs for autonomy are reduced, since responses to
conditions are coded into blocks and upgraded without
changing flight software. Uplink load is reduced, as the
blocks physically reside onboard the spacecraft.

VML use on Mars Odyssey and the Space Infrared
Telescope Facility (SIRTF) has allowed spacecraft

operations teams to place autonomy aboard deep space
missions. For instance, the Mars Odyssey team developed
VML blocks which could react to autonomously detected
unexpected blooming of the Martian atmosphere during
aerobraking end-game to raise the spacecraft orbit to a safe
altitude, without ground intervention. SIRTF is using VML
functionality to gather more data during the mission by
detecting when the facility has settled after a slew, rather
than using worst-case settling times. SIRTF also uses VML
to dynamically build spacecraft commands, dramatically
reducing the size of uplink products and allowing the
mission to live within its communications allocation.

This paper discusses techniques for parameterizing routine
operations using onboard blocks. The relationship between
one-use sequences and reusable blocks is discussed.
Reduced development effort due to iterative block
development is outlined. The ability to migrate to the
spacecraft functionality which is more traditionally
implemented on the ground is examined. The implications
for implementing spacecraft autonomy without the need for
expensive flight software agent development is also
discussed.

Table of Contents
1. INTRODUCTION: SEQUENCING
2. VML SEQUENCING MODEL AND CAPABILITIES
3. PARAMETER USAGE IN BLOCKS
4. BLOCK LIBRARY DEVELOPMENT
5. UPLINK PRODUCT SIZE REDUCTION
6. MARS ODYSSEY AEROBRAKING
7. MIGRATING AUTONOMY TO MRO WITH VML-2
8. CONCLUSIONS

1. INTRODUCTION: SEQUENCING

Deep space missions require some means for performing
commands on a timed basis. The execution of timed
spacecraft commands is known as sequencing [1].

Sequences are typically represented in a planning interface
within the ground system, translated to an uplinkable form,
radiated to the spacecraft, loaded by some means, then

2

executed. Sequence execution results in the issuance of
commands to the spacecraft in some timed order.

Modern spacecraft with real-time operating systems and
preemptive task scheduling implement sequencing as a
software component. The features implemented in the
generic flight software sequencing capabilities profoundly
affect the complexity of operating the spacecraft, the size of
the team necessary implement sequences, the operations able
to be undertaken, the frequency of uplink, and the size of
uplinked products. Virtual Machine Language (VML)
sequencing carries a number of distinct advantages over
more traditional sequencing architectures, in both capability,
personnel time, and cost.

This paper provides a brief overview of VML components
presented in an earlier paper [2]. It then goes on to present
techniques for simplifying operations and minimizing
uplink size made possible by VML capabilities. Examples
of these techniques are given for the Mars Odyssey and
Space Infrared Telescope Facility (SIRTF) missions

2. VML SEQUENCING MODEL AND CAPABILITIES

The VML Flight Component (part of the flight software)
follows a paradigm called procedural sequencing. At any
particular time, exactly one instruction is considered to be
"next" on a sequence engine. This allows named sequences
which can be called using parameters, easy creation and
evaluation of logic constructs, and an implicit ability to
branch and loop. Parallelism is achieved by instantiating a
fixed number of sequence engines, and explicitly loading
and running sequences as threads on those engines. These
kind of sequence engines are called virtual machines. They
resemble a CPU which can interpret instructions, with
memory, dynamic data storage implemented as a stack, and
an instruction pointer (see Figure 2-1). Some number of
machines are instantiated for the mission. These machines
limit the number of threads of execution which can operate
in parallel.

Instr
pointer

Static engine
state

Instruction
storage

Data stack

Engine 1

Figure 2-1: Virtual machine sequence engines

Each engine is used for two distinct purposes: storing
sequences, and executing sequences. When a file containing

a VML module is loaded into an engine, the named
sequences (called functions) within that module become
available for running on any engine. They are invoked by
name rather than in index. In some cases, the function is
executed on the same engine in which it is stored. In other
cases, the function is executed on a different engine than the
one in which it is stored, as shown in Figure 2.2. This
would be the case for a function calling another function in
a library stored on a different engine.

Instr
pointer

Static engine
state

Instruction
storage

Data stack

Engine x

Instr
pointer

Static engine
state

Instruction
storage

Data stack

Engine y

Figure 2-2: Function on engine x running library routine
stored on different engine

The VML flight component runs as an embedded task under
VxWorks or a similar real-time operating system within the
flight software. It works in concert with the rest of flight
software, dispatching commands to other flight software
tasks in order to affect changes to the spacecraft behavior.
The flight component has been developed in a manner
compatible with JPL Category A SEI level 3 code, with
appropriate methodology, documentation, review, and
testing. It is available for use on any NASA mission under
license from JPL.

The user creates functions as text using a text editor, or a
front-end generation tool. The text is translated by the VML
compiler according to generic VML constructs and mission-
specific definition files for allowed global variable names
and constants. It is then translated to a binary form
compatible with the VML Flight Component. Discussion
of the VML constructs is presented here in their human-
readable form, rather than in binary form.

3

The procedural orientation of virtual machines allows
sequences to be expressed using a number of high-level
language constructs. These constructs form a simple but
powerful scripting language in which users can express
desired spacecraft activities using named functions, with
parameters, a variety of data types, and a rich set of
operators.

Comments

Comments within VML code start with a semicolon (;) and
continue with all characters until the end of the line is
encountered. Comments are sprinkled throughout examples
in the following sections.

Modules

A module is a container for one or more functions, along
with optional persistent storage. It is bounded by MODULE
and END_MODULE keywords.

Modules partition the functionality of the problem space
into manageable chunks. For instance, a library module may
contain several reusable blocks for controlling instruments
and performing communications activities. A daily absolute
sequence may reside as the only function in another module,
since it is changed out with regularity.

One module exists per file input to the VML compiler. This
same module is defined in a flight-compatible format in the
VML compiler output file.

Functions: Blocks, Relative Sequences, Absolute Sequences

Function is the generic term for a sequence containing
absolute and/or relative time tags. A function is a named
executable chunk of VML which may accept parameters and
define local variables. Functions may also return values to a
calling function. A function starts with the keywords
BLOCK or RELATIVE_SEQUENCE for relatively time
tagged instructions, and starts with SEQUENCE or
ABSOLUTE_SEQUENCE for instructions containing one
or more absolute time tags.

A block is a function that is intended to be reused (and
frequently is stored onboard the spacecraft). Blocks contain
only relative time tags so that when they are executed none
of the statements are late.

A function that contains only relative time tags between its
statements and is not intended for multiple uses is called a
relative sequence. Relative sequences contain only relative
time tags so that they may be kicked off at any time
without being late. Relative sequences are frequently
autogenerated by ground-based tools for activities like
aerobraking maneuvers or daily operations which are
planning dependent.

The instructions in a function are bounded between the
keywords BODY and END_BODY. The body of the
function appears after all parameters, flags, and local
variable declarations. A function returns the value
UNKNOWN when it encounters the END_BODY. A

function returns a specified value when it encounters any
embedded RETURN statements.

Parameters

Parameter values are specified immediately after the function
declaration as a series of zero or more INPUT or
INPUT_OUTPUT keywords, each of which is followed by a
locally scoped name. INPUT values are copies of values.
INPUT_OUTPUT values reference a variable provided in the
call and can return values. Example code is given below.

BLOCK acquire_star
 INPUT ra ;right ascencion
 INPUT dec ;declination
 INPUT file
 INPUT acq_failure_delay
 INPUT_OUTPUT slew_time_result

Flags

Flags impose special behavior on a function. Two flags
exist: AUTOEXECUTE, which causes the function to begin
execution automatically after loading, and AUTOUNLOAD,
which causes the module the function is part of to be
unloaded when the function completes execution. Flags
appear immediately after the function's parameters, but
functions with flags typically don't have parameters .

BLOCK deploy_antenna
 FLAGS AUTOEXECUTE AUTOUNLOAD

Variables

Several different scopes of variables exist in VML
sequencing: local, module, and global.

Local variables are defined within functions, and are not
visible by name outside the function. Each instance of an
executing function contains fresh copies of its local
variables. The local variables appear immediately after the
parameter list and any flags in a function.

BLOCK acquire_star
 INPUT ra ;right ascencion
 INPUT dec ;declination
 INPUT file
 INPUT acq_failure_delay
 INPUT_OUTPUT slew_time_result
 DECLARE DOUBLE slew_time
 DECLARE INT actual_acq_seconds

Module level variables are visible by name to all functions
defined in the module, and have persistent data values until
the module is unloaded from the engine.

Global level variables are visible by name to all functions,
and to flight software. Storage in global variables is
persistent. Global variables are used for event-driven
sequencing, allowing sequences to respond to environmental
changes in the spacecraft.

Variable types include integer, unsigned integer, floating
point double, logical, time, and string. Variables may be
assigned regardless of type: all assignments of different
types result in meaningful values to the assignee. This
runtime flexibility removes many constraints with which
operators would otherwise have to deal, and results in
simpler sequences.

4

Time

Time may be specified in several formats: as absolute (wall-
clock time), spacecraft time in seconds, and relative time in
hour/minute/second form. Each instruction has a time tag
which acts as a delay between its execution and the
completion of the previous instruction.

Mathematical operations on time are available for
calculating delay values needed in DELAY_BY and
DELAY_UNTIL statements. DELAY_BY implements a
relative time delay for a specified number of seconds.
DELAY_UNTIL implements a delay until the given time
has come to pass. DELAY_UNTIL is useful for inserting
parameterized absolute time into a relatively time function.

Spacecraft commands

Spacecraft commands are issued by the sequence as either
constant commands, or as dynamically built commands.

Constant commands are seen by the flight component as
binary patterns to be forwarded without change to the
command processing flight software. In the human-readable
VML file, commands in a untranslated form are specified
using the ISSUE keyword, which causes all characters to the
end of the line to be passed to a mission-specific translation
tool for embedding the corresponding binary in the uplink
product.

Commands may be built on the fly by the VML flight
component based on parameter and variable values. Any
command defined in the system that can be interpreted by
the flight software can be built with a special external call
"issue_cmd". Dynamically built commands values are
validated according to the same rules built into the ground
system, thereby protecting the spacecraft from
miscalculations. Invalid command parameter values result in
a command error and will abort a thread of execution if
aborts are enabled.

Operators

A wide variety of operators is available in VML. Arithmetic
operators include absolute value, negation, addition,
subtraction, multiplication, division, modulo, and power.
Bitwise operators include and, or, exclusive or, invert, shift
left, and shift right. Logical operators include and, or,
exclusive or, and not. String operators include length, split
left (returns substring from start of string up to and
including given character position), and split right (trailing
substring starting at given character position).

The most complex expression is one including a binary
operator, e.g.

R00:00:00.1 max := 15.5 + try
Expressions with precedence may be incorporated on a
future mission.

Conditionals

VML includes an IF construct which can be used for
choosing a code path based on variable values. This
selection allows logical evaluation of multiple conditions

using ELSE_IF and ELSE statements. The IF construct is
particularly useful for reacting to parameter values passed
into a function, calculated local variables, and global
variable values.

R00:00:00.1 IF acq = -1 THEN
R00:00:00.1 CALL record_failure tries, ra, dec
R00:00:00.0 DELAY_BY acq_failure_delay
R00:00:00.0 ELSE_IF acq = 0 THEN
R00:00:00.0 DELAY_BY 11.5
R00:00:00.0 ELSE
R00:00:00.1 slew_time_result := SPACECRAFT_TIME
R00:00:00.0 END_IF

R00:00:00.1 IF mode = "high_speed" THEN
R00:00:00.1 ISSUE ...
R00:00:00.1 ISSUE ...
R00:00:00.0 ELSE_IF mode = "mga_800" THEN
R00:00:00.1 ISSUE ...
R00:00:00.1 ISSUE ...
R00:00:00.0 ELSE_IF mode = "mga_100" THEN
R00:00:00.1 ISSUE ...
R00:00:00.1 ISSUE ...
R00:00:00.0 ELSE
R00:00:00.1 ISSUE ...
R00:00:00.1 ISSUE ...
R00:00:00.0 END_IF

Loops

A WHILE loop is available for structured conditional
looping. This construct can be used to repeat a set of
statements until a condition becomes TRUE or FALSE.
This construct also allows repeating a set of statements a
specific number of times using a counting variable.

R00:00:00.1 i := 1
R00:00:00.1 WHILE i <= 10 DO
R00:00:00.1 ISSUE ...
R00:00:00.1 ISSUE ...
R00:00:00.1 i := i + 1
R00:00:00.0 END_IF

Event-driven Sequencing

The WAIT and TEST_AND_SET statements are used to
detect events represented by global variables.

The WAIT statement suspends operation of the function
until its condition is met, then resumes execution of the
function at the next instruction. This instruction is
particularly useful for non-deterministic sequences which are
related to real-time events: rather than assuming worst-case
timing, the sequence can be designed to execute with a
minimum of wasted time.

A variety of WAIT statement constructs exists. The
simplest waits for a new value to arrive in a global variable
before proceeding. Condition checking can be applied if
desired. In addition, the statement can wait until a value
arrives which is different than the value of the variable at the
start of the statement. An optional timeout to bound the
worst-case behavior of the statement is available.

R00:00:00.1 v := WAIT gv_a
R00:00:00.1 v := WAIT gv_a > 4
R00:00:00.1 v := WAIT_CHANGE gv_a

R00:00:00.1 v := WAIT gv_a > 4 TIMEOUT R00:01:00.0

Because the continuation from the WAIT statement can
depend on the value received, and because a wide variety of
values could result in proceeding from a WAIT statement,

5

the value of the global variable which resulted in
completion of the WAIT is returned for assignment to a
local variable. This prevents a race condition between
passing the WAIT statement and using the global variable
value. Consider the following code fragment:

R00:00:00.1 v := WAIT gv_a > 4
R00:00:00.5 IF gv_a = 10 THEN
R00:00:00.1 ISSUE ...
R00:00:00.0 END_IF

If the WAIT statement is satisfied at time t with the value
10, but 0.1 seconds later a 3 is written by another sequence
or by flight software, the body of the IF statement which
should execute would not do so.

On the other hand, using a copy of gv_a placed in the
variable v would be guaranteed to cause the IF statement to
work correctly, event if the value of gv_a changed before
reaching the IF:

R00:00:00.1 v := WAIT gv_a > 4
R00:00:00.5 IF v = 10 THEN
R00:00:00.1 ISSUE ...
R00:00:00.0 END_IF

TEST_AND_SET is used on a counting semaphore for
managing a shared resource. This is a classical real-time
programming access problem [3]. An example use might be
to enforce mutually exclusive access to an instrument suite
by two separate, non-deterministic sequences. Using a check
with a conditional followed by a subtraction leads to an
intractable race condition whereby both blocks could
complete the IF check before setting the semaphore with the
blocking value. TEST_AND_SET allows an integer global
variable to be checked and decremented in one instruction,
preventing this race.

R00:00:00.1 v := TEST_AND_SET gv_a

Call: in-line function execution

A function may be executed in-line from another function
using the CALL statement. The calling function is
suspended, the caller is executed, and then the calling
function resumes. The caller may pass parameters to and
receive return values from the called function as appropriate
using a RETURN statement. Relative time tags for the
statement after the CALL indicate the amount of time from
the completion of the CALL statement.

Calling does not start a separate thread of execution or use
another sequence engine. Instead, resources on the calling
engine continue to be used to maintain the thread of
execution. Refer back to figure 2-2. This figure shows an
engine using code that is stored on another engine (e.g. a
master sequence calling a block in a library). The instruction
pointer contains a value that indicates code residing on a
different engine, but the instruction pointer itself resides on
the same engine. The data stack accessed by that engine is
always its own.

Calls may be nested arbitrarily deeply, limited only by data
stack space on the calling engine. However, call depth
greater than about three become difficult for the developer to

evaluate, and can make understanding the timing of the
sequences problematic.

Spawn: New Thread of Execution

A new thread may be created to run in parallel with existing
threads using the SPAWN statement. The spawning
function may pass parameters to the spawned function, but
no return value is possible. Unlike CALL statements,
SPAWN statements complete on the same tick of the clock
at which they are invoked. The spawned function is
scheduled for evaluation on the next time tick.

Spawning is useful when an activity needs to be initiated
that is functionally separate from the initiator, and contains
no intrinsic ordering requirements relative to the initiator.
For instance, a master sequence may need to initiate
downlink at a certain time, but continue to manage
instrument observations. If the downlink activities are
consolidated in a block, the master sequence can simply
spawn the downlink block, then continue on with its usual
management tasks. This approach simplifies development of
the master sequence by eliminating the interleaving of
activities within the body of the sequence. It also allows the
functionality of the downlink activity to be abstracted into a
block, tested, then repeatedly used.

3.0 PARAMETER USAGE IN BLOCKS

Parameters allow organized information to be passed in to a
function. Such functions are intended to be reused. The term
for a reusable function is block.

Using parameters, functionality can be abstracted and
named, and the behavior of the block altered using different
parameter values. This bounds the problem domain of a
specific block, and makes reviewing the products for
problems easier. In addition, calls to the block become
easier to review, as the repetitive steps have been abstracted,
and only the values of the controlling parameter needs to be
considered. This quality was put to use in Mars Odyssey
aerobraking sequence generation tool, discussed later.

Parameters also allow a unique flexibility for changing the
problem domain. Unlike sequence global variables, which
have to be named at the beginning of the mission, parameter
names are strictly local in nature. That is, the name is
defined in the block. This allows the names and mix of the
parameters of a block to be changed without requiring
alterations to defined global variable names.

In addition, parameters allow secure transmission of values
into a block. Each invocation of the block occurs in an
uninterruptible fashion. The parameter values are copied as a
snapshot in time, and passed to the invocation. Contrast
this to the use of sequence global variables, where an
implicit race condition exists due to the visibility of the
variables to flight software and other blocks. At any point
during the running of the block, a global variable value the
block is depending on is subject to alteration, and
considerable effort must be expended by designers and
reviewers to guard against unintentional alteration.

6

Once the set of parameters to a block is defined, the
interface to the block is consolidated. Use of sequence
global variables within a block should be eliminated except
for accessing event-driven variables which represent
spacecraft state. This limits the side effects produced by the
block to spacecraft commands, and removes a potential
source of race conditions and logic problems that altering or
using global variables would allow.

Parameters may be used to guide block execution logic and
make selections for commands sent by the block, alter
timing features of the block, or set spacecraft command
parameter values of command sent by the block. Each of
these uses shall be discussed in turn.

Execution logic

Coupled with the IF statement, parameters can easily
determine which paths of code in a block are executed. By
comparing parameter values to conditionals in an IF
statement, a region of code is chosen for execution or
skipped. Different IF constructs and parameter types are
particularly good at different kinds of selection.

An IF statement can be as simple as the IF clause followed
by an END_IF. This usage is good for taking optional steps
within a block based on parameter values or calculated
logical values. A logical value passed in can be tested to
select a set of statements for execution.

BLOCK configure
 INPUT perform_stow
 ...
BODY
...
R00:00:00.1 IF perform_stow = TRUE THEN
R00:00:00.1 ISSUE ...
R00:00:00.0 END_IF
...

In the above example, a call from a function of the form
R00:00:00.1 CALL configure TRUE, ...
to the configure block would result in the execution of the
guarded section of code.

An IF clause followed by an ELSE clause is useful for two-
value decision making within a block based on parameter
values or calculated logical values.

BLOCK sci_configure
 INPUT configure_fast
 ...
BODY
...
R00:00:00.1 IF configure_fast = TRUE THEN
R00:00:00.1 ISSUE ...
R00:00:00.0 ELSE
R00:00:00.1 ISSUE ...
R00:00:00.1 ISSUE ...
R00:00:00.1 ISSUE ...
R00:00:00.0 END_IF

Parameters may also guide the number of times a certain set
of statements is performed. Coupled with the WHILE
construct, a parameter can be used to bound the execution of
the number of repetitions desired. For instance, in the
calibration block shown below, a parameter is passed in
during the call to determine the number of times the science
instrument calibration command is sent.

BLOCK sci_configure
 INPUT configure_fast
 INPUT calibration_passes
...
 DECLARE INT i := 0
 ...
BODY
...
R00:00:00.1 i := 1
R00:00:00.1 WHILE i <= calibration_passes DO
R00:00:00.1 ISSUE SCI_CALIB 10, 12.2
R00:00:08.8 i := i + 1
R00:00:00.0 END_WHILE
...

Timing changes

VML provides two programmable delays: DELAY_BY for
a relative delay of some relative time span, and
DELAY_UNTIL for a delay involving an absolute time tag.
The statements can accept parameter values (or even
calculated local variables based on parameter values) to
allow a block to change its timing behavior in response to
invocation changes.

For example, suppose the science configuration block has
some amount of time that is supposed to elapse between
each calibration pass completion and further calibration
steps. The amount of delay could be controlled using a
parameter and a DELAY_BY statement.

BLOCK sci_configure
 INPUT configure_fast
 INPUT calibration_passes
 INPUT calibration_delay
...
BODY
...
R00:00:00.1 i := 1
R00:00:00.1 WHILE i <= calibration_passes DO
R00:00:00.1 ISSUE SCI_CALIB 10, 12.2
R00:00:00.0 DELAY_BY calibration_delay
R00:00:00.1 i := i + 1
R00:00:00.0 END_WHILE

...

Another use might be found in a maneuvering block.
Suppose the set of steps the spacecraft is supposed to take
during ascent is dependent on the launch date of the vehicle,
but the timing between those steps is fixed. Suppose further
that there is an instantaneous launch window. Then the
behavior of the block could be governed by passing in the
known launch time as a parameter to the block, preventing
it from running the useful portions before the appropriate
time has come to pass. Such a use might appear as below.
The block could be started from the ground and its status
verified before launch, but all useful activities would be
delayed until after launch has occurred for safety reasons.

BLOCK ascent
 INPUT launch_time
...
BODY
...
R00:00:00.0 DELAY_UNTIL launch_time
...

A spawn of the above block from the ground or from a one-
use sequence might appear as follows:
R00:00:00.1 SPAWN ascent A2010-312T02:17:22.2, ...

7

Command values

Because VML can build commands on the fly, parameter
values of a block can be directly substituted into commands
issued on the spacecraft. This offers enormous flexibility to
send commands without using lots of different paths
through a block to select the correct constant command.

For instance, suppose a spacecraft block needs to maneuver
the spacecraft in some manner that involves slewing to a
known right ascension and declination. The flight software
has the ability to slew the spacecraft if so desired. The
values to use in this command have a very large set of
potential states and combinations. By building the
command directly, the behavior of the block is simple and
succinct.
BLOCK acquire_star
 INPUT ra ;right ascencion
 INPUT dec ;declination
...
R00:00:05.4 EXTERNAL_CALL "issue_cmd" "SLEW_TO",ra,dec
...

Non-numeric values can be used in command substitution
as well. The string representing a file name might be
substituted into a file load command that loads one of the
VM block libraries.

BLOCK load_secondary_libraries
 INPUT sci_lib
 INPUT eng_lib
...
R00:00:00.1 EXTERNAL_CALL "issue_cmd" "VM_LOAD", 7, sci_lib
R00:00:00.1 EXTERNAL_CALL "issue_cmd" "VM_LOAD", 8, eng_lib
...

State values can also be used in command substitution. The
string representing a state could be substituted into a
command that selects a component. The block might appear
as follows:

BLOCK contact_dsn
 INPUT antenna
 INPUT bit_rate
...
R00:00:00.1 EXTERNAL_CALL "issue_cmd" "DWN_SELECT", antenna
R00:00:00.1 EXTERNAL_CALL "issue_cmd" "DWN_RATE", bit_rate
...

The call to this block from a one-use sequence might appear
like this:
R00:00:00.1 CALL contact_dsn "high_gain", "bps_120"

Since the dynamic command building software checks that
only valid strings result in command dispatches, the block
contains the same checks as would be performed by a
ground expansion of the command. Note that VML also has
provisions for checking the result of dynamically building
and dispatching a command, and the block could be aborted
if a bad command send was attempted.

4. BLOCK LIBRARY DEVELOPEMENT

Blocks residing together for reuse in one module are referred
to as a block library. Typically, a block library includes
parameterized blocks capable of the following:

• initiation and termination of communications
• safe mode recovery assistance

• maneuver operations
• science instrument configuration
• science instrument control

A mission may include one or more block libraries based on
the need for specific capabilities during particular portions
of a mission. For instance, a planetary mission may require
different blocks in one library during launch, cruise, orbital
injection, orbital maneuvering, and observation phase. A
non-planetary deep space mission may be better suited to
having separate libraries simultaneously loaded but with
different functional content: engineering, science
instruments, and fault protection.

The block development process can be performed iteratively.
Because blocks have a well-defined scope and a
parameterized interface, the process of coding can be broken
down among team members working in parallel. Blocks are
treated as software, with a light weight iterative
development process involving an architectural breakdown,
some specification of purpose and requirements (perhaps in
a block dictionary), iterative development of VML code,
and iterative testing.

The architectural phase involves making decisions about the
need for blocks to do certain tasks, and the name of these
blocks. If multiple libraries are present on the mission, the
library or libraries to which the block belongs must be
determined. Block inclusion when there is one library is
trivial. Block inclusion when there are multiple libraries
must be explicitly decided, as only one copy of the block
can be present within the VML flight component at any
instance in time. If a block is needed on a per-phase basis, it
should be included in those versions of the block library
corresponding to phases where the block is needed. If it is
needed across several instrument libraries which may be
loaded simultaneously, it should be included instead in a
common library divorced from the instrument libraries.

Once entries exist to track each required block in a block
dictionary, requirements regarding the functionality of that
block are levied. A first pass at parameters to specify the
interface for the block is made, including entry conditions
regarding allowed values. Basic descriptions of the block's
purpose and operating constraints are made.

Next, the block undergoes iterative development by a
specific developer. The developer uses an editor to produce a
VML source file, which is fed to the VML Compiler to
produce a binary. The binary is then executed in a
workstation program called Offline Virtual Machine
(OLVM).

OLVM allows the user to interactively control the clock,
examine variables, step through statement execution, collect
human-readable reports showing the execution time of each
command in the sequence, and generally debug the logic of
the block. OLVM allows the block to be run at several
hundred to several thousand times real-time, on the user's
own workstation. This tool is a very inexpensive alternative
to using a flight-like software testing laboratory with a
flight-like CPU: no special personnel are required, no

8

unique resources are scheduled, and the cycle time between
detecting an error and fixing it is measured in seconds rather
than days. And, since OLVM consist of the flight code with
a user interface wrapper, the fidelity of behavior between
OLVM and the flight code cycling on the vehicle
approaches 100%.

During execution, the user has the option of using a capture
file to record all keystrokes in to OLVM, and all output
generated. This capture file is human-readable, but can also
act as a script to drive a rerun of the testing performed. This
means that unit test scripts can be developed interactively,
and kept for later retest. Once a block is considered to be
complete to some level of functionality, the block and its
testing script can be stored in a revision control system for
later extraction and testing.

As the code for a block is completed, it is subject to a
design review involving the developer, the operations
manager, representatives from systems, and representatives
from flight hardware and flight software subsystems. The
experts evaluate the timing of commands shown in the logs
produced by the developer using OLVM, and consider the
content of each command executed. Changes are fed back to
the block developer, who repeats the development cycle
until all requirements are verified. The interactive test
scripts produced during the process are available to retest the
block quickly in case of further changes.

As a final validation, blocks are run in a flight-like way in
the expensive software test lab and on the vehicle. At this
point in the process, however, the blocks tend to work
correctly, as they have been repeatedly tested for errors on
the workstation tools.

Test teams can be as small as two or three members due to
the fast turnaround nature of the VML development process.
Mars Odyssey's sequencing team numbered three, and
developed roughly forty blocks. Work tends to be closely
coupled with requirements, debugging is simple, and
required changes can be fed back very rapidly without the
need for expensive software test facilities. The process is
also scalable to larger groups (as used on SIRTF) thanks to
the ability to easily distribute the OLVM test environment.

5. UPLINK PRODUCT SIZE REDUCTION

The combination of parameterization, variables, a large set
of data types, and dynamic commanding makes it possible
in some cases to reduce the size of uplinked products over
traditional ground-expansion of sequences. One case is that
of the Space Infrared Telescope Facility (SIRTF)

Instrument design on SIRTF requires that large commands
(hundreds of bytes) be transmitted frequently over a serial
line. The exact byte patterns would have to be embedded
repeatedly in a controlling sequence performing
observations, leading to very large ground-expanded blocks
which exceeded available uplink contact time through the
Deep Space Network.

During most of the commanding, however, most of the
parameters in the instrument commands stay the same. The
observatory has the equivalent of a series of modes the
instrument need to be in, with compatible sets of command
parameters being repeatedly transmitted to the instrument.
So, rather than ground expand the instrument commands,
blocks set the observatory to particular instrument modes,
represented by global variable values. Other blocks accept
parameters for the instrument command values that vary,
then dynamic commands are built from these parameters and
the modal global variables. The controlling sequence
invokes a block with a few parameters, initiating a cascade
of activity which results in sending commands to the
instruments.

The uplink size reduction for this situation is potentially
very large. A simple mathematical expression represents the
uplink load for any VML file.

†

bytes = bytes(instri)i=1
nÂ (1)

For a fully ground-expanded sequence with no logic, no use
of parameterized blocks, and no use of global variables for
state, equation (1) is dominated almost entirely by the
command instructions. It can be estimated by the equation

†

bytes = (bytes(time)i=1
nÂ + bytes(opc)+ bytes(const)+ bytes(cmd))

= (n)(2 + 1+ 2 + cmdsize)
= (n)(5 + cmdsize)

(2)

For a hypothetical command size of 200 bytes, and 1000
spacecraft commands, the number of uplink bytes is
therefore

†

bytes = 1000 *(5 + 200)
= 205000

(3)

without considering framing overhead or insertion of error
detection. These will scale linearly with the size of the
uplink product and therefore will cancel out when
examining the percentage savings.

Under VML, physical values that would be held constant in
the instrument commanding regime are loaded into sequence
global variables, and the values are substituted on-the-fly
into dynamically built commands. The block for creating
and executing the command is held onboard in a block
library, and is not subject to uplink load: once onboard, the
instructions do not have to be retransmitted. Instead, a
series of calls to this construction block is made from a
master sequence, and consists of a block name followed by
a series of parameters:

R00:00:00.1 CALL instrexec 12, 5, 2, 4

The instruction breaks down as a time tag (2 bytes), a
CALL opcode (2 bytes) and a name (1 byte for offset in a
table), for 4 bytes. Each call parameter requires 3 bytes of
overhead plus a 4 byte value for a total of 7 bytes.

†

bytes = callbytes+ 4 * parmbytes
= 4 + 4 * 7
= 32

(4)

9

So, since equation (1) is again dominated by the spacecraft
commanding instructions, 1000 instructions becomes

†

bytes = 1000 *(32)
= 32000

(5)

Taking the ratio of the ground-expanded case versus the
dynamically-issued case results in a savings of

†

savings = (groundex - dyncmd) / groundex
= (205000 - 32000)/ 205000
= 84%

(6)

The SIRTF numbers differ slightly from the above simple
case, but the results were similar. The reduction in uplink
brought the spacecraft closer to its target DSN uplink
allocation, without developing complex instrument flight
software additions or new sequencing flight software
requirements.

6. MARS ODYSSEY AEROBRAKING

The Mars Odyssey aerobraking experience is a good
example of using parameterized blocks to simplify
operations in a repetitious but challenging mission phase.
Unanticipated events can require a rapid response in order to
maintain safe operations, or even to survive.
Communication delays and processing with distant
spacecraft can exacerbate the effect of unanticipated threats to
spacecraft safety, as the ground is seeing a snapshot of state
minutes in the past. Due to its flexible logic, VML is well
suited to respond to threatening events.

Aerobraking involves the use of a planet's atmosphere to
alter the spacecraft's orbit [4]. After a burn to capture into a
highly elliptical orbit, the spacecraft periapsis is lowered
into the rarified atmosphere in order to use drag to alter the
orbit. Successive passes through the atmosphere reduce the
amount of energy of the orbit, and thus the apoapsis of the
orbit is lowered. After the orbit is sufficiently lowered, a
burn is performed to raise the periapsis of the spacecraft out
of the atmosphere, placing the spacecraft in a stable orbit.

In order to maximize drag while maintaining control
authority, the solar array of the Mars Odyssey spacecraft was
presented perpendicular to the direction of travel. The period
of Odyssey's orbit around Mars was reduced from eighteen
hours down to two hours.

 The series of steps for a drag pass is illustrated in Figure 6-
1. At the beginning of the pass, the spacecraft turns to
aerobraking orientation, terminating contact with earth.
Mars Odyssey has a hook for the solar array in order to lock
it into a mechanically stable orientation. The solar array is
placed into the hook. Then the spacecraft begins a slew to
maintain the solar array at a known perpendicular orientation
to the direction of travel, maximizing drag during the pass
and lowering the apoapsis of the orbit. The spacecraft passes
through the densest portion of the atmosphere, then exits
that portion. The solar array is unhooked and reacquires the
sun. Odyssey then slews to earth and initiates contact.

drag pass

turn

hook

start slew

unhook

slew to earth,
contact

finish slew

Figure 6-1: Mars Odyssey aerobraking steps

Nominal aerobraking passes

Because of the frequency of the activity and its repetitious
nature, the aerobraking activities were abstracted into a
named block with parameters. The block implemented each
of the steps required for the pass. The block also included
parameters for time delays for placing the solar array in the
hook, turning to drag attitude, acquiring attitude data when
exiting the drag pass, slewing to earth, and completing
packet retransmission. The duration of the drag pass and the
number of drag pass playbacks of data were also
parameterized.

This block was invoked from an automatically generated
relative sequence, which was replaced every few passes. The
number of passes increased in frequency over time as the
orbit was lowered and the orbital period shortened. One to
two invocations of the aerobraking block occurred in the
autogenerated sequence at the start of aerobraking, whereas
six to nine occurred during end-game. By kicking off the
parameterized aerobraking block, the team had smaller
products to check which contained only the important
information that would change from pass to pass.

In order to increase the resilience of the process, the
autogenerated sequence which called the aerobraking block
covered more passes than was required. That way, when the
next version of the sequence was available, it would be
started before the previous version had run out. The new
version terminated the previous version. This allowed extra
passes to be available for use in case communications
problems or other difficulties prevented timely delivery of
the invocation for the next drag pass.

10

End-game aerobraking passes: autonomous pop-up

The last few orbits (or end-game) of aerobraking is
particularly sensitive to unexpected drag events, as the
natural period of the orbit without the final periapsis raising
burn is as short as 24 hours. Unexpected atmospheric
blooming can dramatically increase the density of the
atmosphere through which the spacecraft flies, causing a
larger than expected decrease in orbital altitude and
exceeding thermal limits on the solar array due to excess
atmospheric friction. Notification of this condition to the
ground, and issuing commands, is subject to light speed
delays (30 minutes in the case of Mars Odyssey). In
addition, the real behavior of the spacecraft grows more and
more difficult to model as the spacecraft orbit shrinks.
Navigation solutions take two to four hours to produce,
which is longer than the last few orbits of the aerobraking
process. For these reasons, some sort of onboard detection
and response to unexpectedly large aerobraking during end-
game was required on Mars Odyssey.

Two separate elements were required for Mars Odyssey:
some means of detecting the bloom's effect on the
spacecraft, and some means for initiating a burn of the
engines to raise the periapsis to a safe altitude.

Detection was performed onboard using flight software to
check IMU data [5]. The flight software calculated an
estimated time of periapsis during each pass, and placed this
value into a sequence global variable. This time shift was
used to advance or delay the kickoff of the aerobraking
block in a normal pass, allowing better accuracy for the
pass. In addition, this flight software could note to high
level fault protection that an unusually large shift of the
periapsis had been detected. If fault protection determined
that the spacecraft was in the end-game, it invoked a
separately developed pop-up block which would
autonomously burn the engines to raise the spacecraft out of
the atmosphere.

The presence of the pop-up block, coupled with the flight
software detection mechanism, would have allowed Mars
Odyssey to reach a safe condition without the intervention
of the ground even in the event of a communications
dropout, should an unexpected blooming event have
occurred.

7. MIGRATING AUTONOMY TO MRO WITH VML-2

Limited autonomy proved so useful that the next Mars
orbital mission, the Mars Reconnaissance Orbiter, will fly
with the enhanced VML-2 flight component. This flight
component will allow even easier development of limited
autonomic functions on the spacecraft.

Autonomous response requires two main components: a
logic and decision making feature and access to state
information. The logic and decision making features
available in VML already provide enough capability to
select and execute courses of action. What is needed is
access to spacecraft state to provide data on which to base

decisions. Ideally, access to the telemetry measurements
would provide a uniquely complete snapshot of the
spacecraft's state.

To this end, the VML-2 flight component to be flown on
MRO is being upgraded with accessors into the telemetry
system. These accessors provide the latest data pushed by
the flight software to the sequence engines, and are viewed
as read-only global variables. Rather than explicitly
designing visibility to certain states and requiring the flight
software components to place these values into global
variables, all such state will implicitly be available for use
should a sequence need to use it.

This approach provides a great deal of flexibility for dealing
with problems during the mission. Since telemetry provides
almost all the information available to the ground-based
operations team, simple decision making can be made
onboard where necessary without incurring round-trip light-
speed delays. The proximity of the decision making to the
state detection makes it possible to handle a range of
physical effects with short time constants. Small amounts
of autonomy developed by the spacecraft operations team
can supplement basic flight software capabilities.

8. CONCLUSIONS

The parameterization and block libraries made possible by
VML simplify spacecraft operations by allowing
functionality of the spacecraft to be abstracted. Uplink
product size is minimized by the ability to call blocks that
implement most of the command steps. This block is well-
suited to a development process, including review and test,
using inexpensive runtime tools for most of the block
development cycle. The block library approach also allows
some autonomous operations aboard a mission to be
implement without the development of autonomous flight
software.

Procedural orientation allows sequencing to be approached
as a structured programming problem, which in turn allows
higher quality products to be produced by smaller
operations teams. The use of rapid check-out tools like
Offline VM reduces the modification cycle time of
sequences, allowing the operations development team to
produce products on an accelerated schedule.

Simple autonomy depends on access to data. To this end,
VML-2 will include the ability to read telemetry points
from within a sequence in order to use this data in the
decision making logic with blocks. This will enable
specifically targeted in-situ decision making capabilities
without the development of flight software agents.

11

REFERENCES

[1] D. Kirkpatrick, “Spacecraft Subsystems: Telemetry, Tracking,
and Command”, Space Mission Analysis and Design, 3rd Edition,
pp 381-394, edited by J. R. Wertz and W. J. Larson, New York,
Microcosm Press and Kluwer Academic Publishers, 2000.

[2] C. Grasso, “The Fully Programmable Spacecraft: Procedural
Sequencing for JPL Deep Space Missions Using VML (Virtual
Machine Language)”, 2002 IEEE Aerospace Applications
Conference Proceedings, March 2002.

[3] Carlton, Real-time Programming,. New York: Springer, 1988.

[4] J. Beerer, R. Brooks, P. Esposito, D. Lyons, W. Sidney, H.
Curtis, W. Willcockson, “Aerobraking at Mars: the MGS
Mission”, AIAA 34th Aerospace Sciences Meeting, Reno,
January 1996, AIAA 96-0334.

[5] J. Chapel et. al., “Aerobraking Safing Approach for 2001 Mars
Odyssey”, 2002 American Astronautics Society Guidance and
Control Conferency, Feb 2002.

Dr. Christopher A. Grasso is a flight
and ground software consultant for
Stellar Solutions working with the
Deep Space Mission Systems
directorate of the Jet Propulsion
Laboratory. He has developed
telemetry, i/o, and sequencing flight
components for eight JPL deep space
missions, and a series of ground sequencing
components. He earned a PhD in Electrical and
Computer Engineering from the University of Colorado
in Boulder for work on provably correct real-time system.
He now holds an adjunct faculty position at the
University of Colorado to teach spacecraft software
systems to undergraduate seniors and graduate students.

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

12

